If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-16p+1=0
a = 2; b = -16; c = +1;
Δ = b2-4ac
Δ = -162-4·2·1
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{62}}{2*2}=\frac{16-2\sqrt{62}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{62}}{2*2}=\frac{16+2\sqrt{62}}{4} $
| 39=x-1212-1227=x | | Y=-16t^2+50 | | 5b+2=-b+32 | | -2m-8=-3+24 | | (10x+40)=150 | | (10x+4)=150 | | (23x)/20+4x-13/15=(7x)/5+(4x-5)/20 | | r+3.8=6 | | x/4+-x/5=-19 | | 5p-8=-3p+24 | | -8x+17=-15 | | 6/24=x/40 | | 8=4n+12/6 | | 3m+7/10=4 | | x+11=x2 | | 2x+30=24+5x | | 8/5x=-2 | | 2k/5+3=7 | | −10x−5=135 | | 0.5x+125=180 | | 2k/3=1 | | y/8-4=10 | | y-4/8=10 | | 2x+18)2=(x)2+(2x+12)2 | | 27y^2–11y=0 | | x/2=1=3 | | x=1/2=3 | | n/14=1/2 | | y/3=5.2 | | 6t²-42t+60=0 | | 4.3=-8u+29.9 | | 3^6x=9^2x+8 |